

ANÁLISE ERGONÔMICA POSTURAL DE UMA POSIÇÃO SENTADA EM FRENTE A UM LAPTOP E A COMPARAÇÃO COM AS RECOMENDAÇÕES DA BIBLIOGRAFIA.

Vinícius Vilela da Silva (DES/UFV), Graciane Miranda de Freitas (LAB/UFV), Amanda Piaia Silvatti (LAB/UFV)

RESUMO

A ergonomia no ambiente de trabalho é um dos fatores para uma melhor produção e uma melhor qualidade de vida dos trabalhadores. Em se tratando do avanço tecnológico e da informatização é grande o numero de pessoas que passam a maior parte do tempo trabalhando em frente a computadores e laptop. Isso vem ocasionando diversos quadros clínicos, e o numero significantes de pessoa com de licença do trabalho, gerando gastos excessivos a saúde publica. O objetivo deste estudo é realizar uma análise ergonômica postural de uma posição sentada em frente a um Laptop, observando as angulações articulares durante o trabalho e uma analise de imagens em comparação com periódicos existentes a literatura. Os resultados demonstram que houve diferenças significativas posturais entre os indivíduos avaliados e a literatura em relação aos ângulos.

Palavras-chave: Analise ergonômica; Postura; Angulação articular.

INTRODUÇÃO

Apresentar soluções e propostas para melhorias nas condições de trabalho, é o objetivo maior da ergonomia. Todavia, o rápido desenvolvimento tecnológico nos países industrializados, a automação e a informatização(mecanização), dos postos de trabalho, tendo o seu início na segunda revolução industrial tendo o seu ápice ocorrido a partir da segunda metade do século XX, foram os grandes responsáveis pela adoção cada vez mais frequente da posição sentada nos postos de trabalho.

O resultado foi do eminente aumento da automatização foram a exponencial crescente no número de trabalhadores sofrerem de dores nas costas, no pescoço, nos pulsos, nos braços, nas pernas e de distúrbios oculares por causa da adoção de posturas inadequadas nos ambientes de trabalho. Fato extremamente importante para os trabalhadores que atuam durante muitas horas sentados, que adotem hábitos posturais corretos e adequados à cada tipo de atividade desenvolvida.

Estudos ergonômicos comprovam que as rotinas posturais inadequadas no ambiente laboral, são responsáveis pelo surgimento de problemas como: DORT (Doença Osteomuscular Relacionada ao Trabalho) e LER (Lesões por Esforços Repetitivos).

Seguindo o contexto acima, leis de segurança e prevenções de lesões nos trabalhadores fizeram com que muitos direitos foram adquirido pelos trabalhadores; possibilitando assim uma melhoria significativa no desempenho dentro do trabalho.

Leis tais como a Lei Nº 9.719, de 27/11/1998, dispõem sobre normas e condições gerais de proteção ao trabalho portuário, institui multas pela inobservância de seus preceitos, e dá outras providências.Outras leis de proteção á saúde do trabalhador fizeram o desenvolvimento emergente da ergonomia, refletindo de maneira positiva na qualidade de vida destes indivíduos.

METODOLOGIA

As imagens utilizadas no presente estudo, para comparar e analisar a postura de uma posição sentada em frente a um Laptop foram obtidas no LAB (laboratório de biomecânica) da UFV.Os alunos modelos tinham diversos pontos anatômicos marcados com fita crepe no sendo eles: tornozelo, na altura do maléolo; o joelho, na altura do epicôndilo lateral do fêmur; no quadril, na altura do trocanter maior; acrômio da escápula; cotovelo, na altura do epicôndilo lateral do úmero; e no punho.

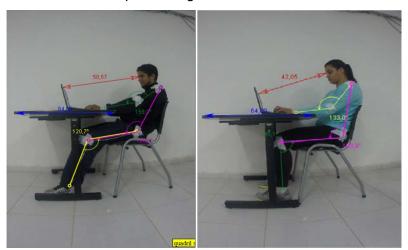
Para facilitar a marcação dos pontos anatômicos no software utilizado para análise. Os avaliados sentaram-se em 3 tipos se cadeiras tendo ergonomia e ajustes distintos realizando uma simulação da utilização de um laptop que estava em cima de uma mesa, tendo as imagens coletadas utilizando a câmera da marca GO- pró.

Para realizar a análise ergonômica e biomecânica da imagem foi utilizado o software "TRACKER" que é um programa de análise de imagens e vídeos e que permite o calculo de vetores, de distância entre pontos anatômicos, de ângulos entre membros tendo como referência analisar a amplitude de movimento.

Para realizar uma comparação dos dados obtidos dos voluntários com a literatura foram extraídos artigos e documentos na internet nos bancos de dados Scielo, Pubmed entre outros periódicos da web.

RESULTADOS E DISCUSSÃO

Quando o ser humano deixa a posição de pé e passa a se sentar, ocorre uma serie de mudanças no seu esqueleto e no funcionamento de seus músculos: alterações na pressão dos discos invertebrais;


Os músculos do dorso e do pescoço também são alterados, alem dos diversos tecidos e a circulação sanguínea que também sofre uma alteração importante (GOMES, 2010).

Para analise buscamos observar pontos relevantes no que diz respeito à postura de uma pessoa quando a mesma usa o laptop, como a cadeira usada, a posição dos olhos, da cabeça, ombros, coluna, quadril, joelhos e tornozelos.

A partir de uma revisão bibliográfica recomenda se que a distancia adequada entre os olhos e a tela do computador deve ser entre 45 e 60 centímetros, estando sua linha de visão alinhada com o topo da tela do computador, a cabeça e o pescoço eretos, lembrando que não se deve curvar a cabeça para buscar uma melhor visão da tela. Os cotovelos devem ser mantidos junto ao corpo, alinhados em um ângulo de 90 a 110 graus com o teclado e os pulsos devem permanecer retos e relaxados, outra recomendação é que se deve evitar usar somente a articulação do punho para movimentar o mouse, usando se as articulações maiores como ombro e cotovelos deve favorecer a estabilidade da coluna e dos discos intervertebrais, para manter a coluna apoiada e as pernas com uma angulação que favoreça a circulação sanguínea, os joelhos devem ter uma angulação de aproximadamente 90 graus, assim como os cotovelos e o quadril, os pés devem estar apoiados, se a cadeira não for ajustável o ideal e usar algum apoio para os pés. Visto isto buscamos fotografar modelos em posições normalmente usadas durante o uso do notebook, para que realizássemos uma analise comparativa das mesmas com um tido como padrão postural.

Analise das imagens

Iremos analisar três blocos de imagens, onde haverá duas pessoas diferentes e em cada tendo tipos de ergonomia distintos..

Bloco I No bloco de imagens I, podemos verificar que a imagem I.a a angulação do joelho é de 120°, angulação do quadril 126° e a angulação do cotovelo é de 155°, e a distancia da tela 57cm. A imagem I.b, angulação do joelho é de 90,1°, angulação do quadril 103,8° e a angulação do cotovelo é de 133°, e a distancia da tela 42,05cm. Neste bloco de imagens comparando I.a com I.b, temos o mantivemos o mesmo conjunto de mesa e cadeira para os dois modelos. Podemos analisar que a

angulação do joelho de I.a está além da recomendação, já I.b está aos padrões adequados. A angulação do cotovelo tanto de I.a quanto de 1.b estão fora do padrão, estes não se alinham ao corpo e nem representa angulação entre 90° a 110°. Em 1.a coluna não se apoia totalmente na cadeira, em I.b apesar de apoia o pescoço não se alinha a coluna. Em nenhuma das imagens a visão se alinha a tela do computador.

Bloco II:

Nas imagens do bloco II, podemos verificar que a imagem II.a contém uma angulação do joelho de 93,3°, angulação do quadril 98,5° e a angulação do cotovelo é de 118,1°, e a distancia da tela 37,76cm. A imagem II.b, angulação do joelho é de 94,3°, angulação do quadril 69,1,8° e a angulação do cotovelo é de 92,6°, e a distancia da tela 27,72cm. Neste bloco de imagens comparando II.a com II.b.

A partir disto, podemos analisar que a angulação do joelho de II.a e II.b estão dentro dos padrões adequados. A angulação do cotovelo de II.a está forado padrão, já em II.b podemos ver uma angulação adequada. Em II.a apesar de a coluna se apoiar totalmente na cadeira o pescoço não se alinha a coluna, em II.b coluna não se apoia totalmente na cadeira, tendo a projeção do tronco para frente, e a aproximação da tela. Em nenhuma das imagens a visão se alinha a tela do computador.

Bloco III:

Nas imagens do bloco III, podemos verificar que a imagem III.a a angulação do joelho é de 91,8°, angulação do quadril 101,4° e a angulação do cotovelo é de 154,9°, e a distancia da tela 47,24cm. A imagem III.b, angulação do joelho é de 92,5°, angulação do quadril 93,2° e a angulação do cotovelo é de 139,3°, e a distancia da tela 44,90cm. Neste bloco de imagens comparando III.a com III.b. Podemos analisar que a angulação do joelho de III.a e III.b estão dentro dos padrões adequados. A angulação do cotovelo tanto de III.a quanto de III.b estão fora do padrão, estes não se alinham ao corpo e nem representa angulação entre 90° a 110°. Em III.a coluna se apoiar totalmente na cadeira o pescoço se alinha a coluna, em III.b coluna não se apoia totalmente na cadeira, apesar de a coluna apresentar uma posição ereta. Em nenhuma das imagens a visão se alinha a tela do computador.

Nos três blocos de imagens podemos analisar que as cadeiras se adequam melhor para um e para o outro modelo não, também podemos destacar que o laptop deveria ter um suporte adequado para que o campo de visão se torne o ideal.

CONCLUSÃO

Após a execução deste estudo, a ergonomia pode contribui muito para a prevenção de lesões, dado que uma postura não adequada poderá contribuir em longo prazo para o aparecimento destas lesões. Portanto faz se necessário à avaliação postural e a fabricação de suportes, cadeiras e mesas que se adequem ao modelo de cada um, contendo ajustes com alavancas para a regulagem dos mesmos, pois é evidente que as pessoas possuem estruturas diferentes.

REFERÊNCIAS

Ergonomia: soluções e propostas para um trabalho melhor.*Prod.* [online]. 2009, vol.19, n.3,pp. 00-00.

GOMES, Vantuir. **Ergonomia: Postura Correta de Trabalho.Revista Brasileira de Gestão e Engenharia.**NºII. Jul-Dez 2010. pg.17-29.

MARQUES, Nise Ribeiro; HALLAL, Camilla Zamfolini; GONCALVES, Mauro. Características biomecânicas, ergonômicas e clínicas da postura sentada: uma revisão. Fisioter. Pesqui. [online]. 2010, vol. 17, n. 3, pp. 270-276.

http://www.ocupacional.com.br/ocupacional/ergonomia-mantenha-a-postura-no trabalho/.